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Hysteresis in Ising model in transverse field 
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7 Saha Institute of Nuclear Physics, l/AF Bidhan Nagar, Calcutta 700064, India 
$ Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 30 September 1993 

Abstract The hysteretic response of an king system to a periodically varying transverse 
(hmnelling) field has been investigated. Numerical and approximate analytical techniques have 
been used to solve the mean-field equation for the dynamics, in the presence of a heat bath at a 
finite temperature. The scaling behaviour of the hysteresis loop area and the phase di3gnm for 
the dynamic (phase) transition have been obtained. 

1. Introduction 

When the external magnetic field on a ferromagnet is swept, say sinusoidally, in time 
the system cannot respond instantaneously, and the response gets delayed (in general 
periodically but modified in form for its time variation). In parficular, if the relaxation 
time of the thermodynamic system is larger than the time period of the oscillating magnetic 
field, an interesting competition takes place. This leads [l] to the hysteresis loops, arising 
out of the delay in response to the driving field; a typical non-equlibrium phenomena. 

There has been considerable investigation in recent years, on the hysteretic response of 
various (classical) magnetic model systems. Rao et a[ [21 observed the power-law variation 
of the hysteresis loop area (A)  with the (small) frequency (f) and amplitude (ho) of the 
externally applied magnetic field, in a n-vector model in the n + 00 limit. Dhar and 
Thomas [3] considered the transverse magnetization possible in the n-vector model, and 
obtained the (corrected) power law in the n + 03 limit. Tome and de Oliviera [4] studied 
the (delayed) response of an king magnet in the presence of a sinusoidally varying magnetic 
field, solving numerically the approximate mean-field equation for the Ising dynamics. Lo 
and Pelcovits [5] studied the Monte Carlo dynamics of an king model (in two dimensions) 
in presence of a sinusoidally varying external field and obtained the power law variation of 
the loop area A in the f and ho + 0 limit. Acharyya and Chakrabarti [ 11 studied Monte 
Carlo dynamics of king models in one to four dimensions, and also the mean-field equation 
of motion, for a wide range of variation of frequency and amplitude of external magnetic 
field and the temperature of the system. They fitted the observed variation of the loop area 
to a scaling form, with the (non-monotonically varying; Lorentzian in the mean-field limit) 
scaling function reducing to the previously observed power law in the low frequency limit. 

Here we study similar (finite temperature) relaxation and the consequent hysteresis 
phenomena, in an king system put in a periodically varying fransverse or tunnelling field. 
Specifically, our system is described by the Hamiltonian 

H = - C J ~ ~ U ~ ~ ~ ~ ~  - r(t)CUxi ~ r(t) = rocos(znft) (1) 
(id) i 

where the U’S are the Pauli matrices. 
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In view of the wide applicability of the (timeindependent) transverse king Hamiltonian 
to represent the (tunnelling induced) order-disorder transition in hydrogen-bonded (KDP- 
type) ferroelectrics and Jahn-Teller compounds 161, and the possibility of tuning the 
transverse (tunnelling) field by changing the extemal pressure on the hydrogen-bonded 
ferroelectrics 171, the study of quantum hysteresis in such a transverse king model is not just 
of pedagogic interest. With suitable tuning of the transverse field by pressure modulation, 
the interesting features of the hysteresis loops in such ferroelectric systems, as obtained here 
for the above model, can be studied. 

We have studied here the variation of the longitudinal and transverse magnetization loop 
areas A, = $ mXdr and A, = $ mzddr respectively, and the dynamic order parameter Q = 
$ mzdt, as functions of the frequency (f) and amplitude (ro) of the periodically-varying 
transverse field and the temperature (T) of the system, from the equation of motion for the 
average magnetization m = (q) = mX.? + mLi. This we have done here by setting up the 
mean-field equations of motion for the magnetization m. 

We find that the variation of the loop area A, with kequency f, for different parameters 
(ro and T) can be expressed in a scaling form. Also, a dynamic phase transition (from Q 
= 0 for high Po and T) to Q # 0 (beyond critical values of ro and T, depending on f )  
occurs and the phase diagram (in the ro, T plane) for this transition has been obtained. 

2. Mean-fidd equation of motion 

In the mean-field approximation 181 (see also [6]), the Hamiltonian can be approximated as 

H N -Chi. 0;.  hi = m t i  + r.? (2) 

where the nearest neighbour sum over Ji,j in (1) has been taken as unity. We then write 
the generalized mean-field equation of motion (cf [9]) as 

where r = r(r) is a sinusoidally varying function as given in (I). 
It may be mentioned here that the macroscopic relaxation time r can, in principle, 

differ for longitudinal and transverse magnetization. In order to reduce the number of free 
parameters in the Hamiltonian, we have considered them identical here. In the classical 
limit (r = 0), the above equation of motion reduces to the well known mean-field equation 
191 for the king dynamics. 

3. Numerical results 

We solved numerically, using a fourth-order Runge-Kutta method (in single precision; the 
value of the time differential was taken to be the above (coupled) dynamical equations 
(for the two components of magnetization in (3)). Using a simple trapezoidal rule we then 
evaluted the longitudinal and transverse magnetic hysteresis-loop area A, and A, and the 
dynamic order parameter Q as defined earlier. 
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Figure 1. The time vxiation of the peaurbing transvme field (P) m d  the corresponding 
response for the x-component of magnetization (m"). The ins- shows the corresponding 
Lissajous plots. (i) f = 1000, ro = 1.25 and T = 1.25; (ii) f = 2000. To = 1.25 and T = 1.25: 
(iii) f = 2000, PI, = 150 and T = 1.25 and (iv) f = 2000, ro = 1.25 and T = 1.50. 

Some typical hysteresis loops (for two defferent sets of parameters f, ro and T )  are 
shown in figure 1 for the x-components of magnetization (m") and in figure 2 for the 
z-component of magnetization (m'), respectively. 

The variation of the loop area A ,  with frequency f has been shown in the inset of 
figure 3, for different amplitude ro and temperature T .  We fitted this variation in the 
loop area A, (for comparatively large ro and T values; in the range 1 to 2 for both the 
parameters, in figure 3), to the scaling form (1) 

with a Lorentzian scaling function 

The best-fit values for the exponents a, p ,  y and S are found to be around 1.75 f 0.05,0.50 
f 0.02, 0 f 0.02 and 0 & 0.02; the data collapse (see figure 3) is very convincing using 
(4) with these exponent values, but gets visibly disturbed for exponent values beyond the 
above ranges. 
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Figure 2. The time variation of the peaurbing transverse field (r) and the carresponding 
response for lhe z-component of magnetization (d). The insets show the corresponding 
Lissajous plots. (i) f = 2000, ro = 0.75 and T = 0.50; (ii) f = 2000, ro = 0.75 and T 
= 0.75; (iii) f = 2000, ro = 0.50 and T = 0.75 and (iv) f = 4000, ro = 0.50 and T = 0.75. 

It may be mentioned that the loop area A, does not show up any comparable smooth 
scaling with frequency, for different parameter values. It may also be noted in this 
connection that, unlike A,, A, loops do not correspond to any energy change. 

We also studied the variation of the quantity Q with ro. T and f .  We found, that Q 
decreases continuously with increasing ro and T. A (dynamic) phase transition from Q 
f 0 (for low values of ro and T) to Q = 0 (beyond a phase boundary line) was detected 
numerically (Q c lo-' for Q = 0 phase). This phase separation line is shown in figure 4 
for a typical value of f (= 500). 

4. Approximate analytic results 

Some understanding of this scaling can, in fact, be obtained from line arised forms of the 
equation of motion (3). Linearization can be carried out in three limits: namely, in the high 
temperature (T-' + 0), the low tunnelling field amplitude (ro + 0) and in the adiabatic 
(f --f 0) limits. 

In the first two cases, the linearized equations of motion take the forms 
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Figure 3. The variation of the scaled loop area A, = A,r,=Ta with the scaled frequency 
f = f / ( r L T 6 )  using CY = a,  B = 5 and y = 0 = S. Different symbols correspond to different 
ro and T : (0 ) ro = 1.25 and T = 1.25; (U) r o  = 1.50 and T = 1.25; (A) ro = 1.75 and T = 
1.25; (0) Po = 1.25 and T = 1.50; (*) r o  = 1.50 and T = 1.50; (+) ro = 1.75 and T = 1.50; 
(*) ro = 1.25 and T = 1.75; (X) ro = 1.50 and T = 1.75; (6) r,) = 1.75 and T = 1.75. The 
full curve indicates the proposed Lorentzian scaling function (5). The inset shows the variation 
of A, with f at different ro and T .  

in the T-' + 0 limit, and 

dmz 
t-=-mz+tanh 

dt 
dmx 

s-=--nzx+ 
dt (7) 

in the ro + 0 limit. For T > 1, mz decays to zero in the first case (6). The longtime 
soIution of the dynamical equation for mi in [7] can be obtained easily as the attractive 
fixed point of the map describing the discretized form of the differential equation: mz( t+s)  
= tanh[mz(t)/T]. This gives mr = tanh(mL/T) # 0 for T c 1 and mL = 0 for T > 1. 
Putting the solution for mr for T c 1 into the dynamical equation for mr in (7), reduces it 
to the same form as (6) but with r(t)/T now replaced by r(t) in the second term. Defining 
now s 23rfr and h 2irf 5, one can express the general solution of m"(t) as 

m"(t) = Jcos(s) + Ksin(s) (8) 

with K = A I  = (ro/T)[A/(l +AZ)] for T > 1 from (6) as well as from (7), and ro/T 
replaced by ro for T c 1 (from (7)). The loop area A, = $mXdr = 2 K r o  can then be 
expressed in the form given in (4) (containing the full Lorentzian scaling function g(h)). 
The resulting exponents are CY = 2, p = 1 and y = 0 = 6 in the T-' --t 0 limit (from (6) 
and (7) for T > 1) and CY = 2, B = 0 = y = 6 in the ro + 0 limit (from (7) for T c I). 

In the adiabatic (f-' >> t, or small h) limit, one can write m = mo + 6 + O(A2), 
where mo N O(;io) and 6 - O(hl): mo [tanh(lhl/~)l(h/lhl). Now collecting the linear 
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Figurr 4. Phase diagram for the dynamic phase bansition: below the critical ri(T) line 
indicated by the symbols. Q acquires a non-zero value in the ’F‘ phee and Q = 0 in the ‘P’ 
phase. The open circles correspond to Q = 0 for f = 500. The estimte of the phase boundary 
from (12) has been indicated by the full curve. 

terms in 6 and A, one gets 

For T > 1, the above equation gives the solution 6L = 0 (of course mfi = 0). 
Using this to obtain mi for the right-hand side of the other equation, one gets JX = 
-A(d/ds)tanh[r(s)/T]. Hence the loop area A, = $ m X d r  = $(m; + Sx)dr + O(A*), 
where r = rocos(s),  can be expressed as 

A, - f T I  - + O( f *) 
2n 

where I (y) = 1 sin2($) sech2[y cos(s)]ds . (IO) 

and 4/y in the small and large y limits, respectively, the loop area 
A, can again be expressed in the form (4) with g ( x )  - x in the x 4 0 limit, and with 
01 = 2, f i  = 1, y = 0 = 6 in the Po << T limit and with 01 = 1, fi = 0 = y = 6 in the 
Po >> T limit. Although these limiting values for the exponents are not observed (because 
of the inaccuracy of the linearization approximations in the range of our study), they provide 
useful bounds for the observed values, and the Lorentzian scaling function appears quite 
naturally here (without any frequency rescaling ( y  = 0 = 6), unlike the classical case [I]). 

In the Q # 0 phase in the dynamic phase diagram (figure 4). m‘ itself acquires a 
non-zero amplitude (which vanishes beyond the phase boundary). An equation for the 
phase boundary can therefore be obtained from the dynamical equation for mi in (3) by 
determining the line, approached from large To and T region (m‘ = 0) , where mz tends 
to grow. Near this line, the dynamical equation for mL can be integrated over one cycle to 
obtain 

r”” (3 
As I ( y )  goes to 

The right-hand side of (1 1) is the logarithm of the factor by which mr grows over one 
cycle. So, the equation for the phase boundary line (for any finite f) is given by ro = 
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F(ro/T). For small y, F(y) - y, giving the transition at T = 1, as ro -+ 0 (see figure 4). 
In fact this is an exact point for the phase boundary in the ro + 0 limit, as can be 
seen from the possibility of linearization of the tanh function in the equation of motion 
(3) for mi in this limit when one approaches from the Q = 0 (mz = 0)  phase.^ For large 
y ,  I y cos($) I- y I s - n/Z I, and expanding tanh(n) as r/(l + x ~ ) ' ' ~ ,  one gets F ( y )  - 
(UT) sinh-'[(rr/2)(I'o/T)]. This approximation is actually good for all y .  and gives the 
phase boundary equation as 

(12) 

The analytic estimate (from the above equation) for the phase boundary line is shown 
by the continuous line in figure 4, and gives fair agreement with the numerical results. A 
similar study here for the transverse magnetization gives $' mXdt - 0 for the entire parameter 
space, as the time variation of the transverse magnetization has the antisymmetry of r ( t )  
(as in figure 1). 

5. Concluding remarks 

A few concluding remarks are appropriate here. Our study uses the mean-field equation of 
motion (3). It should be emphasized that other possible forms of the equation of motion 
can be derived from the mean-field free energy [6]); these however reduce to our form in 
the high temperatwe limit, and are expected to give the same qualititative behaviour for 
the hysteresis. It may also be mentioned that our equation of motion arises solely from 
'heat bath' and does not contain any 'intrinsic' dynamics (ar-ising from [H, a]). Such 
quantum dynamics will typically be much more rapid than that considered here, but should 
be included for other (high frequency and low temperature) regimes. 

In conclusion, here we have studied the hysteretic response of the Ising model at a finite 
temperature, in the presence of a periodically driven transverse field. Solving numerically 
for the time variation for the response magnetization @om the above equation of motion), 
we find the transverse magnetization loop area A, shows a scaling ((4), see figure 3) to a 
Lorentzian form in the high temperature limit. Also, we observe a dynamic phase transition 
for the longitudinal magnetization, and the phase boundary obtained here is different from 
the static one (see figure 4). Approximate analytic techniques have also been used to explore 
the solution of the dynamical equation (3) in various limits. The analytic results for the 
loop area A, in these limits have been compared with the numerically observed scaling 
behaviour (expressed by (4)). An approximate analytic estimate of the (dynamic) phase 
boundary has also been obtained (equation (12)) and the results have been compared with 
the numerical observations. 
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